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The possible use of a hyperbolic equation to describe heat conduction in dispersed systems 
is analyzed. 

In calculations relating to conductive heat t ransfer ,  a dispersed system has usually been considered as 
a uniform medium with certain effective character is t ics  ~, c, p. This type of approach has yielded excel-  
lent practical  resul ts  when analyzing steady or slowly-varying states. However, in recent  years  the ten- 
dency toward the practical  use of high-intensity heat t ransfer  with dispersed coolants has greatly increased 
interest  in the study of essentially transient processes .  Experimental data relating to heat t ransfer  be-  
tween a solid surface and a dispersed coolant for small Fo numbers differ considerably from the values 
derived by using the classical heat-conduction equation [1, 2, et~.]. The theory developed in [3] and at-  
tempts at making an exact computer calculation of heat conduction through a layer  of regularly-shaped 
part icles [4, 5] gave no results  adequate for practical use. Satisfactory agreement with experimental data 
was obtained in [6] and [7] by making additional assumptions as to the mechanism of the process  ("contact" 
resis tance in [6], the possibility of separating the effective thermal conductivity into two additive con- 
stituents corresponding to individual phases in [7]). 

The possible use of a hyperbolic heat-conduction equation [9, 10] was discussed in [8]; this may be 
derived by using a law of heat propagation differing from the classical  equation 

a#  �9 ( i )  

and a heat-balance equation 
0~ 

--" vq = cp - -  (2) 
Oz 

in the form 
a~, 0~6 ~ L AO. (3) 
aT &2 cp 

The application of Eqs. (1)-(3) to dispersed media has an obvious physical meaning.* In a transient 
process ,  in fact, the temperatures  of the individual phases at points quite close together are  in general 
very  different. Local heat t ransfer  between the phases arising in this way re tards  the development of a 
temperature field in a heterogeneousmedium. It is quite clear  that r r  (the relaxation time) represents  the 
character is t ic  time required for equalizing the temperatures  between the phases. An approach of this kind, 
which allows for the local relaxation of the temperatures  in the dispersed system, clearly enables us to 
make a theoretical analysis of conductive heat- t ransfer  processes  for far shor ter  t imes and greater  tem- 
perature  gradients than would be possible using the classical  heat-conduction equation. 

* The use of Eqs. (1)-(3) for uniform (homogeneous) media and their physical meaning and consequences 
were discussed in [9, 10, 11]. A hypothesis as to the finite velocity of heat and mass propagation in capil- 
lary-porous solids was proposed ear l ie r  in [12] and further considered in r13, 14], while a hyperbolic equa- 
tion of transient mass t ransfer  in dispersed systems was given in [15]. 
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Fig. 1. Time dependence of the thermal fluxes (a) and 
temperatures (b, c): a) 1) solution of the hyperbolic 
equation; 2) solution of the sys tem (15)-(16);  3) solution 
of the parabolic  equation; b) 1) t ime dependence of 01 ; 
2) t ime dependence of 02; c) t ime dependence of 02 for  
small  Fo. 

Le t  us apply Eqs.  (1)-(2) in o rde r  to study a pa r t i cu la r  case:  t rans ien t  heat t r an s f e r  between a s u r -  
face and a compact  l aye r  of s tat ionary,  Impenetrable  ma te r i a l  (1. e . ,  one not allowing a s t r e am  of gas to 
pass  comple te ly  through it), compris ing a d i spersed  so l id -par t i c le - -gas  sys tem,  since exper imenta l  data 
have been published for  p r e c i s e l y  this case.  

We cons ider  the heat-conduct ion p roces s  in a semiinfini te  l aye r  of d i spersed  m a te r i a l .  We supple-  
ment  Eqs.  (1) and (2) with the initial and boundary conditions: 

"q(x, ~ ~ 0 x :.= O, x > 0 ,  (4) 

O . ( x , ' o - O  "r=0,  x > 0 ,  (5) 

lom 

(x, x) .... ~o x =0 ,  x > 0 .  

The solution to the problem (1), (2), (4)-(6) was der ived  in [11], and for  a thermal  flux takes the 

1 

q : , O , o ( _ _ / ;  X,oc ",t,'2 exp ( x Ill o { 2-~-/'~ '1--  ~,x~%" T} 
, 2~r  _ _  

or  in d imensionless  var iab les  
1 

Nu = Fo 7 ~ exp 

where  

Fo - / 1 - -  y2 Fo~. 

2For k Fo ~ 

1 

(6) 

(7) 

(8) 

Fo r ~rr (9) 
cpd ~ 

T h e  t ime r r  r equ i red  for  the t empera tu re  to become equalized between the gas and the par t i c les  
may  be de te rmined  f rom the equation of the rmal  balance between the phases ,  consider ing (to a f i r s t  ap-  
proximation) that the t empera tu re  drop inside the par t i c les  is negligible and that heat  t r a n s f e r  between 

the pa r t i c l e s  and the gas obeys a l inear  law 

( io) cp o~*sO. 
0"r 

<t = const exp ( - -  c~ I " 

Hence 
(ii) 
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I t  is c l e a r  f rom Eq. (11) that  the t ime  constant  of the p r o c e s s  of in te rphase  heat  t r a n s f e r  

cp 

(Z*S  

Substituting the va lues  of  v r ,  ~* = N u * ~ / d ,  s = 6 ( l ~ e ) / d  into (9) we obtain 

1 
F O  r .... 

6 (1--- e) N u* 
Put t ing y = 0 in (8) 

( 1 2 )  

(13) 

Nu =: Fo'~-~- exp ( Fo ( Fo ) 
2For ) I o / ~  �9 (14). 

We see  f rom (14) that  as  Fo --~ 0 the t he rm a l  flux is l imi ted:  Nu = Fo~l/2.  As Fo --* ~, Nu ~ (vFo) - I /~ ,  
i . e . ,  we obtain the o rd ina ry  solution of the c l a s s i ca l  hea t -conduct ion  equation for  a semiinf ini te  solid (Fig. 
l a ) .  

I t  is  of  fundamental  i n t e r e s t  to c o m p a r e  the solution of the hyperbol ic  equation (14) with exis t ing 
theore t ica l  and exper imen ta l  data r ega rd ing  t rans ien t  heat  t r a n s f e r  between a su r face  and a compact  l aye r  
of d i s p e r s e d  m a t e r i a l .  Fo r  this we make  use  of the r e su l t s  of [16], the au thors  of which analyzed the 
s y s t e m  of d i f ferent ia l  equations for  t r ans ien t  heat  conduction in a d i s p e r s e d  s y s t e m  of the d i s p e r s e d  so l id -  
p a r t i c l e s - g a s  type;  in our  own nomenc la tu re  this t akes  the fo rm:  

Fo,. O0~ .- 0.,--01, (15) 
0Fo 

a Fo, O0~ - Fo,. c9202" t}., 0 v (16) 
0 Fo Of 

The solution to this s y s t e m  of equations for  y = 0 and Fo > 0.007 takes  the f o r m  
1 ! l 

t . . . .  i" For - (1 -1 P)- exp I 0 . (17) 
Fo ] t - -  Fo,. " , 2Fo r . . 2Fo,. 

and as  indicated in [15] a g r e e s  sa t i s f ac to r i ly  with exis t ing exper imen ta l  data.  I t  is not ha rd  to see that  as  
# ~ 0 (in p rac t i ce  # = 10 -3) Eqs.  (14) and (17) coincide.  This  s imul taneous ly  indicates  that the solution to 
the hyperbol ic  equation a g r e e s  sa t i s fac to r i ly  with the exper imen ta l  data p re sen ted  in [16]. I t  was  shown 
in the r e f e r e n c e  ci ted that  { 6 ( 1 - e ) N u * } l / 2  = 2. Substituting this value in (13) we obtain F o r  = 0.25. 
Natura l ly  for  Fo >> For  it is l eg i t imate  to use  the o rd ina ry  c l a s s i ca l  Fou r i e r  equation, while for  Fo < Fo r 
we mus t  cons ider  the hyperbol ic  equation. 

We note that  for  smal l  values  of  # the t e r m  g F o r 0 0 2 / 0 F o  m a y  be neglected even in the or iginal  
s y s t e m  (15)-(16) .  This  follows both f r o m  physical  cons idera t ions  (the t e r m  p F o r 0 0 2 / 0 F o  c h a r a c t e r i z e s  
the in t r ins ic  heat ing of the gas and is only apprec iab le  for  v e r y  shor t  t imes ,  before  the influence of the 
solid phase  has  made  i t se l f  felt) and f r o m  calcula t ions  of the t h e r m a l  fluxes and t e m p e r a t u r e  f ields ove r  
the individual phas e s ,  which we c a r r i e d  out by solving the s y s t e m  (15) - (16) numer i ca l ly  on a compute r ,  
us ing  the gr id  (network) method.  As a numer i ca l  example  Fig. l b ,  e i l l u s t r a t e s  the t ime dependence of 
the t e m p e r a t u r e s  01 and 02 for  y = 0.5. We see  f rom the f igure that  even for  fa i r ly  smal l  va lues  of Fo the 
heat ing of the gas phase  de te rmined  by the t e r m  # F o r 0 0 2 / 0 F o  comes  to an end. The r i s e  in t e m p e r a t u r e  
is then l a rge ly  governed by the solid phase  and the intensi ty of in te rphase  heat  t r a n s f e r .  Here  the d e r i v a -  
t ives  0 01/0  Fo and 0 02 / 0F o  a re  quant i t ies  of the s a m e  o rde r  and the t e r m  pFor  002/0  Fo m a y  be neglected 
for  # << 1. The solution of the s impl i f ied  s y s t e m  (15)-(16) ,  in which the t e r m  # F o r 0 0 2 / 0 F o  is omit ted,  
was  der ived  by the method of in tegra l  t r a n s f o r m a t i o n s ,  and for  the case  of smal l  y ( impor tant  in our  own 
d iscuss ions)  takes  the fo rm 

~ ' ) Fo ) .q / F o ' ,  
Nu __ Fo:  7- exp ( Fo I,,(, - -  exp . 

, 2F~ 2F~ ~ ~--  ~-Or ) . ( 1 8 )  

F o r  y = 0 Eqs .  (8) and (18) coincide.  

Thus the use  of the hyperbol ic  equation for  desc r ib ing  the t r ans ien t  hea t  conduction of a d i spe r sed  
med ium has  enabled us to der ive  a computing re la t ionsh ip  Nu = f(Fo) in s a t i s f ac to ry  a g r e e m e n t  with ex -  
p e r h n e n t a l  data.  T h e r e  is no longer  any need to m a k e  spec ia l  a s sumpt ions  as  to the m e c h a n i s m  of hea t  
t r a n s f e r  in the l a y e r  and between the l a y e r  and the su r face .  C lea r ly  i t  i s  a l so  des i rab le  to use the 
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hyperbolic heat-conduction equation for other classes of dispersed systems; further theoretical and experi- 
mental investigations are required for this. 
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N O T A T I O N  

thermal flux; 
volumetric specific heat of the system; 
coordinate; 
dimensionless coordtrmte; 
particle diameter; 
surface area of the particles in unit volume; 
temperature; 
dimensionless temperature; 
time; 

is the relaxation time; 
is the porosity; 
are the heat- transfer  coefficient between the dispersed material and the surface and 
lnterphase heat-transfer coefficient respectively; 
is the effective thermal conductivity of the system; 

are the Nusselt numbers; 
is the Fourier number; 
is the dimensionless relaxation time; 
is the modified Bessel function of the f i rs t  kindand the f irst  order;  
is the dimensionless parameter.  

S u b s c r i p t s  

1 denotes solid phase; 
2 denotes gas phase. 
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