HYPERBOLIC EQUATION OF HEAT CONDUCTION
FOR DISPERSED SYSTEMS ‘
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The possible use of a hyperbolic equation to describe heat conduction in dispersed systems
is analyzed.

In calculations relating to conductive heat transfer, a dispersed system has usually been considered as
a uniform medium with certain effective characteristics A, c, p. This type of approach has yielded excel-
lent practical results when analyzing steady or slowly-varying states, However, in recent years the ten-
dency toward the practical use of high-intensity heat transfer with dispersed coolants has greatly increased
interest in the study of essentially transient processes, Experimental data relating to heat transfer be-
tween a solid surface and a dispersed coolant for small Fo numbers differ considerably from the values
derived by using the classical heat-conduction equation [1, 2, eté.]. The theory developed in {3] and at-
tempts at making an exact computer calculation of heat conduction through a layer of regularly-shaped
particles [4, 5] gave no results adequate for practical use, Satisfactory agreement with experimental data
was obtained in [6] and [7] by making additional assumptions as to the mechanism of the process ("contact”
resistance in [6], the possibility of separating the effective thermal conductivity into two additive con-
stituents corresponding to individual phases in [7]).

The possible use of a hyperbolic heat-conduction equation {9, 10] was discussed in [8]; this may be
derived by using a law of heat propagation differing from the classical equation
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The application of Egs. (1)-(3) to dispersed media has an obvious physical meaning.* In a transient
process, in fact, the temperatures of the individual phases at points quite close together are in general
very different. Local heat transfer between the phases arising in this way retards the development of a
temperature field in a heterogeneousmedium, It is quite clear that 7 (the relaxation time) represents the
characteristic time required for equalizing the temperatures between the phases. An approach of this kind,
which allows for the local relaxation of the temperatures in the dispersed system, clearly enables us to
make a theoretical analysis of conductive heat-transfer processes for far shorter times and greater tem-
perature gradients than would be possible using the classical heat-conduction equation.

* The use of Eqs, (1)-(3) for uniform (homogeneous) media and their physical meaning and consequences
were discussed in [9, 10, 11]. A hypothesis as to the finite velocity of heat and mass propagation in capil-
lary-porous solids was proposed earlier in [12] and further considered in 713, 14], while a hyperbolic equa-
tion of transient mass transfer in dispersed systems wasgiven in [15].
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Fig. 1. Time dependence of the thermal fluxes (2) and
temperatures (b, ¢): a) 1) solution of the hyperbolic
equation; 2) solution of the system (15)-(16); 3) solution
of the parabolic equation; b) 1) time dependence of 6,;

2) time dependence of 9,; ¢) time dependence of 9, for
small Fo.

Let us apply Egs. (1)-(2) in order to study a particular case: transient heat transfer between a sur-
face and a compact layer of stationary, impenetrable material (i.e., one not allowing a stream of gas to
pass completely through it), comprising a dispersed solid-particle—gas system, since experimental data
have been published for precisely this case.

We consider the heat-conduction process in a semiinfinite layer of dispersed material. We supple-
ment Egs, (1) and (2) with the initial and boundary conditions:
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The solution to the problem (1), (2), (4)-(6) was derived in [11], and for a thermal flux takes the
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The time Ty required for the temperature to become equalized between the gas and the particles
may be determined from the equation of thermal balance between the phases, considering (to a first ap-
proximation) that the temperature drop inside the particles is negligible and that heat transfer between
the particles and the gas obeys a linear law

p = — a*sh. (10)
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It is clear from Eq. (11) that the time constant of the process of interphase heat transfer
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Substituting the values of Ty, a* =Nu*)/d, s =6(1—¢)/d into (9) we obtain
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We see from (14) that as Fo — 0 the thermal flux is limited;: Nu = Fo;i/ 2 As Fo — w,Nu — (1Fo)~1/2,
i.e., we obtain the ordinary solution of the classical heat-conduction equation for a semiinfinite solid (Fig.
12). ' '

It is of fundamental interest to compare the solution of the hyperbolic equation (14) with existing
theoretical and experimental data regarding transient heat transfer between a surface and a compact layer
of dispersed material. For this we make use of the results of [16], the authors of which analyzed the
system of differential equations for transient heat conduction in a dispersed system of the dispersed solid~
particles—gas type; in our own nomenclature this takes the form:

a0,

Fo, —% =-4,—0,, 15

dFo 2t (15)

wFo, 9% po, ¥y g (16)
0Fo oy* T

The solution to this system of equations for y = 0 and Fo > 0,007 takes the form
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and as indicated in [15] agrees satisfactorily with existing experimental data. It is not hard to see that as
p — 0 (in practice y = 107%) Eqgs. (14) and (17) coincide. This simultaneously indicates that the solution to
the hyperbolic equation agrees satisfactorily with the experimental data presented in [16]. It was shown

in the reference cited that {6(1—s)Nu*}1/ 2= 2. Substituting this value in (13) we obtain For = 0.25.
Naturally for Fo > Fop it is legitimate to use the ordinary classical Fourier equation, while for Fo € Fop
we must consider the hyperbolic equation,

We note that for small values of y the term uFoy86,/3Fo may be neglected even in the original
system (15)~(16). This follows both from physical considerations (the term uFord6,/ dFo characterizes
the intrinsic heating of the gas and is only appreciable for very short times, before the influence of the
solid phase has made itself felt) and from calculations of the thermal fluxes and temperature fields over
the individual phases, which we carried out by solving the system (15) - (16) numerically on a computer,
using the grid (network) method. As a numerical example Fig. 1b, ¢ illustrates the time dependence of
the temperatures 9; and g, for y = 0.5. We see from the figure that even for fairly small values of Fo the
heating of the gas phase determined by the term yFory 86,/ 8Fo comes to an end. The rise in temperature
is then largely governed by the solid phase and the inténsity of interphase heat transfer., Here the deriva-
tives 96,/ &Fo and 8¢,/ 8Fo are quantities of the same order and the term pFor 96,/ dFo may be neglected
for 4 <«< 1. The solution of the simplified system (15)—(16), in which the term yFord6,/ 8Fo is omitted,
was derived by the method of integral transformations, and for the case of small y (important in our own
discussions) takes the form
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For y = 0 Egs. (8) and (18) coincide.
Thus the use of the hyperbolic equation for describing the transient heat conduction of a dispersed
medium has enabled us to derive a computing relationship Nu = £(Fo) in satisfactory agreement with ex-

perimental data, There is no longer any need to make special assumptions as to the mechanism of heat
transfer in the layer and between the layer and the surface. Clearly it is also desirable to use the



hyperbolic heat-conduction equation for other classes of dispersed systems; further theoretical and experi-
mental investigations are required for this,

NOTATION
q is the thermal flux;
cp is the volumetric specific heat of the system;
X is the coordinate;
y=x/d is the dimensionless coordinate;
d is the particle diameter;

8=6(1-¢)/d is the surface area of the particles in unit volume;

n is the temperature;

6=d8/8 is the dimensionless temperature;

T is the time;

Ty is the relaxation time;

€ is the porosity;

o, a* are the heat-transfer coefficient between the dispersed material and the surface and
interphage heat-transfer coefficient respectively;

A is the effective thermal conductivity of the system;

Nu=qad/A;

Nu* = -q*d/ A are the Nusselt numbers;
Fo = AtT/cpd® is the Fourier number;

For is the dimensionless relaxation time;

Io(x) is the modified Bessel function of the first kind .and the first order;
u= czpz/_ €405 is the dimensionless parameter,

Subscripts

1 denotes solid phase;
2 denotes gas phase,
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